Sludge Application Record

Field Number: <u>1</u> Field Location: <u>Constant</u> Net Acreage Available for Sludge Application: _____(Buffer Zone)

Date of application		Operator Initials	Date of Laboratory Report	Cubic Yards Applied	Tons	lbs Plant Available Nitrogen	lbs Copper (Co)	and a second second	ibs Lead (Pb)	lbs Zinc (Zn)	lbs Chromium (Cr)	lbs Cadmium (Cd)	PAN	Phosphorus	Solid		Arsenic	Nitrite Nitrogen	PCB'S	Seler
2/14/	1141	DP	2-14-14	14	7,85	41,946,8	10.1332	.4676	1.246	39.9	,2576	.0112	337,588	129,394	1.78892	.01000	,2016	.1148	.007	.112
5/29/	14	OP	5/29/14	7	2.47	13,841. [3,304	.1568	.2856	5.2309	.1176	.0056	66.3457	110.561	,5628	.00/4	,224	18438	.000 /82	.22
8/27	114	OP	8/27/14	A14	6.81	37,377.7	8.8592	.4144	.4144	16.374	.4816	.0448	366-840	116.83	1.55289	.02716	.0448	1.11468	000364	.0112
. ,		· · · · · ·			_		<u> </u>		· · · · · · · · · · · · · · · · · · ·											
	1					+	1										1			
2																				
5,	1	DP		35	17.13	93,165,6	22,296	1.0388	1.946	61.504	,8568	.0616	770,774	406.889	3.9046	103856	,4704	1.41386	1007546	.34
6		DP		.875	4283	0309.W	55741	.02597	.04865	1,538	02142	.00154	19.2693	10.1722	.0976/5	.000964	AN'71	135347	1001887	.008

-40

Cooperative Extension Service Soil Testing And Research Laboratory Marianna, AR 72360 http://soiltest.uaex.edu

The University of Arkansas is an equal opportunity/affirmative action institution.

CITY OF MELBOURNE **Client ID:** 8703684215 **PO BOX 278** MELBOURNE AR 72556 Date Processed: 5/22/2015 Field ID: PAULCOOP Acres: 29 Lime Applied in the last 4 years: No Leveled in past 4 years: No Irrigation: Unknown County: Izard Lab Number: 64454 Sample Number: 3127926

2. Soil Properties

	Property	onderer and the	Value	Units		
Soil pH (1:2 so	il-water)	INTERCONTENSE	5.5			
Soil EC (1:2 so	il-water)		18	umhos/cm		
Soil Estimated	CEC		6.80	cmolc/kg		
Organic Matter	(Loss on Ignition	n)		%		
Estimated Soil	Texture		Sandy L	.oam		
	Patiwat	ed Base Satur	otion (9/1			
1997 <u>-</u> 1997 -		Contraction and a second second				
Total	Ca	Mg	K	Na		
33.80	21.41	6.62	2.00	3.77		

Nutrient	Conc	entration	Soil Test Leve
	ppm	lb/acre	(Mehlich 3)
Р	61	122	Above Optimum
к	53	106	Very Low
Са	291	582	
Mg	54	108	
SO4-S	7	14	
Zn	4.1	8.2	
Fe	104	208	
Mn	51	102	
Cu	2.9	5.8	
В	0	0	
NO3-N	12	24	

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations										
	Сгор	N	P2O5	K20	SO4-S	Zn	В	Lime		
Last Crop	Fallow (19)	ib/acre								
Crop 1	Warm-Season Grasses (MNT) (207)	60	0	160	0	0	0	3000		
Crop 2					1		1997 - N.			
Crop 3	· ·									

4. Crop 1 Notes:

Apply the recommended rates of N, P, and K, in spring when night temperatures are > 60 degrees F for 1 week. For higher production, topdress an additional 60 lb N/Acre after every 4 to 6 weeks of grazing. For fall grazing apply 50 lb N/Acre in early August. Do not apply N after September 1. If S deficiency has occurred previously on this field apply 20 lb SO4-S/Acre.

5. Crop 2 Notes:

6. Crop 3 Notes:

Cooperative Extension Service Soil Testing And Research Laboratory Marianna, AR 72360 http://soiltest.uaex.edu

The University of Arkansas is an equal opportunity/affirmative action institution.

CITY OF MELBOURNE Client ID: 8703684215 PO BOX 278 MELBOURNE AR 72556 Date Processed: 5/22/2015 Field ID: BENCOOPE 20 Acres: No Lime Applied in the last 4 years: Leveled in past 4 years: No Irrigation: Unknown County: Izard Lab Number: 64455 Sample Number: 3127927

2. Soil Properties

	Property		Value	Units			
Soil pH (1:2 so	il-water)	SCHOOL SECTION	5.6				
Soil EC (1:2 so	il-water)		28	umhos/cm			
Soil Estimated	CEC		6.81	cmolc/kg			
Organic Matter	(Loss on Ignitio	n)		%			
Estimated Soil	Texture		Sandy Loam				
	Estimat	ed Base Satura	tion (%)				
Total	Са	Mg	K	Na			
41.24	24.68	10.16	4.48	1.92			

1. Nutrient Availability Index

Nutrient	Conc	entration	Soil Test Level
	ppm	lb/acre	- (Mehlich 3)
Р	64	128	Above Optimum
к	119	238	Medium
Са	336	672	
Mg	83	166	
SO4-S	18	36	
Zn	3.5	7	
Fe	167	334	
Mn	124	248	
Cu	1.2	2.4	
В	0	0	
NO3-N	9	18	

3. Recom	mendations (Notice: State and/or federal nutrient mana	management regulations may supersede these agronomic recommendations.)									
	Сгор	N	P2O5	K20	SO4-S	Zn	В	Lime			
Last Crop	Fallow (19)	lb/acre									
Crop 1	Warm-Season Grasses (MNT) (207)	60	0	60	0	0	0	3000			
Crop 2											
Crop 3											

4. Crop 1 Notes: Apply the recommended rates of N, P, and K, in spring when night temperatures are > 60 degrees F for 1 week. For higher production, topdress an additional 60 lb N/Acre after every 4 to 6 weeks of grazing. For fall grazing apply 50 lb N/Acre in early August. Do not apply N after September 1.

5. Crop 2 Notes:

6. Crop 3 Notes:

Cooperative Extension Service Soil Testing And Research Laboratory Marianna, AR 72360 http://soiltest.uaex.edu

The University of Arkansas is an equal opportunity/affirmative action institution.

1. Nutrient Availability Index

Nutrient	Cond	entration	Soil Test Level
	ppm	lb/acre	(Mehlich 3)
Р	14	28	Very Low
К	46	92	Very Low
Ca	538	1076	
Mg	78	156	
SO4-S	10	20	
Zn	3	6	
Fe	108	216	
Mn	183	366	
Cu	1.1	2.2	
В	0	0	
NO3-N	7	14	

CITY OF MELBOURNE PO BOX 278	Client ID:	8703684215				
MELBOURNE	AR	72556				
Date Processed:	5/22	/2015				
Field ID:	AIR	PORTF				
Acres:	20					
Lime Applied in the last 4 years:	No					
Leveled in past 4 years:	No					
Irrigation:	Unk	nown				
County:	Izar	d				
Lab Number:	644	56				
Sample Number:	312	7928				

2. Soil Properties

	Property		Value	Units		
Soil pH (1:2 soi	I-water)		5.8			
Soil EC (1:2 so	il-water)		18	umhos/cm		
Soil Estimated	CEC		7.64	cmolc/kg		
Organic Matter	(Loss on Ignition	n)		%		
Estimated Soil	Texture		Silt Loam			
1 10						
	Estimat	ed Base Satura	ation (%)			
Total	Ca	Mg	K	Na		
47.62	35.23	8.51	1.54	2.33		

nendations (Notice: State and/or federal nutrient manage	agement regulations may supersede these agronomic recommendations.)									
Сгор	N	P2O5	K2O	SO4-S	Zn	В	Lime			
Fallow (19)	lb/acre									
Mixed Cool and Warm Season Grasses 2 ton (142)	80	90	200	0	0	0	0			
	Crop Fallow (19)	Crop N	Crop N P205	Crop N P205 K20 Fallow (19)	Crop N P2O5 K2O SO4-S Fallow (19)	Crop N P205 K20 S04-S Zn Fallow (19) Ib/acre Ib/acre	Crop N P2O5 K2O SO4-S Zn B Fallow (19)			

4. Crop 1 Notes: To favor cool-season grasses, apply fertilizer in late winter. To favor warm-season grasses, do not apply N until May 1.

5. Crop 2 Notes:

6. Crop 3 Notes:

Arkansas Testing Laboratories

3301 Langley Dr · Searcy, AR 72143

(501) 268-6431 f(501) 268-9314

NPDES Wastewater Monitoring

Water and Wastewater Analysis

Concrete, Asphalt, and Aggregate Testing Geotechnical Testing

Industrial and Construction Quality Control

Melbourne

Collection Date / Time: August 27, 2014 Collection Place: Sludge Bed #1 & #3 Collected By: Coy Dale / KWS 7:00 AM

SLUDGE ANALYSIS

KWS

Parameter		/ Time alyzed	Results	Unit	Analyst	Spike %	Rel %	Method Analysis complies with 40 CFR Part 136:	
Total Solids	08/27	4:00 PM	93.58	%	KLB	NA	0.60	SM 2540B	
Volatile Solids	08/27	4:00 PM	55.46	%	KLB	NA	0.14	SM 2540B	
рН	08/28	10:00 AM	6.65	S.U.	KLB	NA	0.15	SM 4500HB	
Ammonia Nitrogen	09/02	9:30 AM	5620.9	mg/kg	KLB	95.4	8.45	SM 4500 NH3 - F	
Total Kjeldahl Nitrogen	09/02	9:30 AM	42998.6	mg/kg	KLB	95.4	8.45	SM 4500 NORG	
Phosphorus	08/29	8:02 AM	5961.92	mg/kg	KLB	101.1	5.97	SM 4500 P-E	
Nitrate Nitrogen	08/28	1:00 PM	4.99	mg/kg	KLB	92.9	13.37	SM 4500 NO3 - E	
Nitrite Nitrogen	08/28	1:00 PM	39.81	mg/kg	KLB	92.9	13.37	SM 4500 NO3 - E	
Arsenic	09/02	3:27 PM	1.60	mg/kg	KLB	96.5	7.96	SM 3120 B	
Cadmium	09/02	3:27 PM	< 1.6	mg/kg	KLB	96.0	1.38	SM 3120 B	
Chromium	09/02	3:27 PM	17.20	mg/kg	KLB	97.5	1.29	SM 3120 B	
Copper	09/02	3:27 PM	316.40	mg/kg	KLB	93.3	0.03	SM 3120 B	
Lead	09/02	3:27 PM	14.80	mg/kg	KLB	96.0	5.50	SM 3120 B	
Molybdenum	09/02	3:27 PM	10.80	mg/kg	KLB	99.0	0.19	SM 3120 B	
Nickel	09/02	3:27 PM	14.80	mg/kg	KLB	94.8	1.63	SM 3120 B	
Potassium	09/02	3:27 PM	1284.40	mg/kg	KLB	108.1	4.48	SM 3120 B	
Selenium	09/02	3:27 PM	< 16.0	mg/kg	KLB	90.0	7.89	SM 3120 B	
Zinc	09/02	3:27 PM	584.80	mg/kg	KLB	102.3	1.09	SM 3120 B	
Mercury	09/05	2:03 PM	0.97	mg/kg	AI235	108.0	1.860	EPA 7471B	
РСВ	09/05	2:25 PM	< 0.013	mg/kg	AI306	15.6	3.13	EPA 3550C, 8082A	
(PCBs 1016, 1221, 1242, 124	8, 1254, 1260), 1262, 1268)							

Quality Assurance: All Parameters include 10% duplication studies by random selection. The following equipment is checked and calibrated daily: pH meter, balance, incubators, water baths, drying oven and sterilizing apparatus. Ammonia Nitrogen and Oil & Grease Analysis include duplication and spike studies at a rate of at least 10%.

Notes: Samples iced at collection. Preserved with H₂S0₄ to pH₂: Oil & Grease, Ammonia, COD

Neville Adams, Manager

Arkansas Testing Laboratories ^{204 E. Lincoln} Searcy, AR 72143 501-268-6431 Fax 501-268-9314

NPDES Wastewater Monitoring
Water and Wastewater Analysis
Concrete and Aggregate Testing
Geotechnical Testing
Industrial and Construction Quality Control

CHAIN OF CUSTODY / ANALYSIS REQUEST FORM

CLIENT:	NT: MELBOURNE										2			
										1	PARAME	ETERS		
SAMPLE ID	SAMPLE	SAMPLED	BY: N	a	2/1	FEC	AL COLIF	ORM		CALIBRATION			PRESERVATIVES	
EFF	MATRIX		/la	~ ' <u>»</u> /	2	De-chlorinated w	/ Na2S2O3	Preserved	w/ Ice	pH / DO #	163	5	ICE	H2SO4
INF CLAR POND BACKWASH	W=H20 S=SLUDGE D=SOIL C=WELL	DATE	TIME	FLOW	GRAB	FECAL COLIFORM	DISH #	START TIME	MLS	рн 7: 0 ба-	CI2	DO	BOD TSS	NH3
EFF	W	8-2 1 -14	7:00p	x	Х	1-120ml-P	x	x	x	x7,50	x0,03	x7.4	1-H-P	1-L-P
										7.49	0.03	7,5		
Bed + 3	Studge	8-29-14					-							
	Bedir3													
							(2)							
				l.										
	21 1			l.										
										1				
Q, L, H = Quart.	Liter, Half Gal	lon						I				L]]	
Relinquished by					Date/Time			Received by	r.	1		Date/Tim	e	
Relinquished by Date/Time						14 listing			Date/Time P-2744				T _L	
							0		/					/

Laboratory Calculation Worksheet Melbourne Water and Sewer

Sludge Application Record

Bed# 1\$3

%

Cu. Yd.

Dry Tons

1. Latest Sludge Laboratory Report

Lab Name: Arkansas Testing Lab P. O. Box 481, Searcy, AR 72145 2014

Date of Lab Report: <u>August 27,</u> Attach Copy of Lab Report

Calculating oven Dry Tons per Cubic Yards Applied 2.

55.46 Percent Solids From Lab Report: 14 Cubic Yards of Sludge Applied:_ 6.81 CU. Yds. X 0.8775* X Percent Solids = 100

<u>Tons)</u> 2000 lbs.) * (Cu Yds 27 Cu. Ft. 65 lbs Cu. Ft. (Cu. Yd.

3. Calculating Plant Available Nitrogen (PAN)

NH3 (Ammonia) from lab report:	5620.9	mg/kg
NO3 (Nitrate) from lab report:	4,99	mg/kg
Organic N from report 37, 377.7	mg/kg X 0.2=7,475,54	Lmg/kg
PAN equals the sum above	13,101,43	mg/kg

4. Calculating Metals and PAN applied

	Lab Values	Lbs. Per	Dry Tons	Lbs.	Lbs. Per]
	Mg/kg	Dry Ton	Applied	Applies	Acre 🐔	40
Copper (CU)	316,40	X 0.002 = .6328	X 14	8,8592	,22148	
Nickel (NI)	14.80	X 0.002 = .0296	X 14	,4144	,01036	
Lead (PB)	14,90	X 0.002 = ,0296	X 14	,4144	.01036	
Zinc (ZN)	584,80	X 0.002 = 1,1696	X 14	16.3744	,40936	
Chromium (CR)	17.20	X 0.002 = .0344	X 14	14816	,01204	
Cadmium (CD)	1.6	X 0.002 = .0032	X 14	.0448	,00112	
PAN	13,101.43	X 0.002 = 26,20286	X 14	366.84004	9.171001	
Phosphorus	5961.92	X 0.002 = //,92384	X 14	166.93376	4,173344	
Volatile Solid	55.46	X 0.002 = , 1/092	X 14	1.55288	1038822	
Mercury	,97	X 0.002 = .00/94	X 14	,02716	,000679	
Arsenic	1,60	X 0.002 = .0032	X 14	,0448	,00112	
Nitrite/Nitrogen	39.81	X 0.002 = .07962	X 14	1.11468	,027867	1
PCB's	10/3	X 0.002 = ,0000,26	X /4	,000364	,0000091	
Selenium	16.0	X 0.002 = 1032	X 14	,448	10/12	

Arkansas Testing Laboratories

3301 Langley Dr · Searcy, AR 72143 (501) 268-6431 f(501) 268-9314

NPDES Wastewater Monitoring Water and Wastewater Analysis Concrete, Asphalt, and Aggregate Testing Geotechnical Testing

Industrial and Construction Quality Control

Melbourne

Collection Date / Time: May 29, 2014 Collection Place: Sludge Bed #4 Collected By: Coy Dale / KWS 7:00 AM

SLUDGE ANALYSIS

KWS

Parameter		/ Time alyzed	Results	Unit	Analyst	Spike %	Rel %	Method Analysis complies with 40 CFR Part 136:
Total Solids	05/29	4:00 PM	48.2	%	KLB	NA	2.24	SM 2540B
Volatile Solids	05/29	4:00 PM	- 40.2	%	KLB	NA	0.05	SM 2540B
рН	05/29	4:30 PM	6.68	S.U.	KLB	NA	0.15	SM 4500HB
Ammonia Nitrogen	06/05	8:45 AM	1968.0	mg/kg	JDR	95.0	0.00	SM 4500 NH3 - F
Total Kjeldahl Nitrogen	06/05	8:45 AM	15809.1	mg/kg	JDR	95.0	0.00	SM 4500 NORG
Phosphorus	06/04	3:30 PM	7897.24	mg/kg	KLB	96.9	0.00	SM 4500 P-E
Nitrate Nitrogen	06/06	11:00 AM	2.76	mg/kg	KLB	93.6	3.91	SM 4500 NO3 - E
Nitrite Nitrogen	06/06	11:00 AM	13.17	mg/kg	KLB	93.6	3.91	SM 4500 NO3 - E
Arsenic	06/16	1:40 PM	< 16.0	mg/kg	KLB	97.7	5.92	SM 3120 B
Cadmium	06/16	1:40 PM	< 0.40	mg/kg	KLB	103.1	6.12	SM 3120 B
Chromium	06/16	1:40 PM	8.40	mg/kg	KLB	102.5	1.60	SM 3120 B
Copper	06/16	1:40 PM	236.00	mg/kg	KLB	99.9	0.22	SM 3120 B
Lead	06/16	1:40 PM	20.40	mg/kg	KLB	99.0	1.65	SM 3120 B
Molybdenum	06/16	1:40 PM	< 1.6	mg/kg	KLB	105.5	0.56	SM 3120 B
Nickel	06/16	1:40 PM	11.20	mg/kg	KLB	92.8	2.70	SM 3120 B
Potassium	06/16	1:40 PM	519 .20	mg/kg	KLB	99.2	2.20	SM 3120 B
Selenium	06/16	1:40 PM	< 16.0	mg/kg	KLB	101.8	10.84	SM 3120 B
Zinc	06/16	1:40 PM	373.60	mg/kg	KLB	97.1	0.00	SM 3120 B
Mercury	06/06	2:49 PM	0.10	mg/kg	AI311	107.0	1.160	EPA 7471B
PCB	06/04	10:28 AM	< 0.013	mg/kg	AI306	65.9	12.10	EPA 3550C, 8082A
(PCBs 1016, 1221, 1242, 124	8, 1254, 1260), 1262, 1268)						

Quality Assurance: All Parameters include 10% duplication studies by random selection. The following equipment is checked and calibrated daily: pH meter, balance, incubators, water baths, drying oven and sterilizing apparatus. Ammonia Nitrogen and Oil & Grease Analysis include duplication and spike studies at a rate of at least 10%.

Notes: Samples iced at collection. Preserved with H₂S0₄ to pH₂: Oil & Grease, Ammonia, COD

15809,1 13,841,1

Neville Adams, Manager

Laboratory Calculation Worksheet Melbourne Water and Sewer

Sludge Application Rec	cord	Bed#	4			
• • •	Laboratory Report			(40,	2)(7)/.8	(775)
· · · · ·	kansas Testing La				00	=2,47
<u>p</u>	P. O. Box 481, Sea	rcy, AR 72145		,		,
Date of Lab Ro Attach Copy o	eport: <u>May</u> a f Lab Report	29,2014				
2. Calculating ov	en Dry Tons per C	Cubic Yards Applied				
Percent Solids	From Lab Report:	40,2	y server a server and a server of the server	an a	<u>%</u>	All a set Carrier Color Carlos and a
Cubic Yards of	f Sludge Applied:_	7			Cu, Yd.	
CU. Yds. X 0.8	8775* <u>X Percent S</u> 100		17		Dry Tons	
* (Cu Yds <u>27 (</u> (Cu.	<u>Cu. Ft.</u> <u>65 lbs</u> Yd. Cu. F					
3. Calculating Pla	int Available Nitro	ogen (PAN)	×.			
NH3 (Ammoni	a) from lab report:	1968.0		m	ng/kg	
NO3 (Nitrate)	from lab report:	2.76)		mg/kg	
Organic N from	n report 13,84	41.1 mg/kg X 0	2= 2,768	.22	mg/kg	
PAN equals the	e sum above	11 700	•		mg/kg	
	tals and PAN appl			2		
	Lab Values	Lbs. Per	Dry Tons	Lbs.	Lbs. Per	10
	Mg/kg	Dry Ton	Applied	Applies	Acre ÷	40
Copper (CU)	236,00	X 0.002 = .472	X 7	3,304	.0826	
Nickel (NI)	11,20	X 0.002 = .0224	X 7	.1568	.00392	In a second s
Lead (PB)	20.40	X 0.002 = .0408	X 7	.2856	,00714	
Zinc (ZN)	373.60	X 0.002 = 7472	X 7	5,2304	.13076	
Chromium (CR)	8,40	X 0.002 = .0168	X 7	.1176	.00294	
Cadmium (CD)	,40	X 0.002 = .000 8	X 7	,0056	.00014	
PAN	4,738,98	X 0.002 = 9.47796	X 7	66,34572	1,658643	
Phosphorus	7,897,24	X 0.002 = 15, 79448	X 7		2,764034	
Volatile Solid	40.2	X 0.002 = .0804	X 7	.5628	,01407	
Mercury	.10	X 0.002 = .0002	X 7	.0014	,000035	
Arsenic	16.0	X 0.002 = .032	X 7	.224	.0056	
Nitrite/Nitrogen	13,17	X 0.002 = ,02634			,0046095	
PCB's	.013	X 0.002 = ,000026		,000182	,00000455	
Selenium	16.0	X 0.002 = .032	X 7	,224	,0056	

3301 Langley Dr · Searcy, AR 72143

(501) 268-6431 f(501) 268-9314

Water and Wastewater Analysis Concrete, Asphalt, and Aggregate Testing Geotechnical Testing Industrial and Construction Quality Control

NPDES Wastewater Monitoring

SLUDGE ANALYSIS

Melbourne

Collection Date / Time: February 14, 2014 7:00 AM Collection Place: SLUDGE BED - BED 3 & 4 COMPOSITE Collected By: Coy Dale / KWS

KWS

Parameter		/ Time alyzed	Results	Unit	Analyst	Spike %	Rel %	Method Analysis complies with 40 CFR Part 136	5:
Total Solids	02/17	1:00 PM	4.88	%	KLB	NA	2.05	SM 2540B	
Volatile Solids	02/17	1:00 PM	63.89	%	KLB	NA	8.70	SM 2540B	
рН	02/17	1:30 PM	12.97	S.U.	KLB	NA	0.15	SM 4500HB	
Ammonia Nitrogen	02/18	10:00 AM	3647.5	mg/kg	JDR	101.4	0.37	SM 4500 NH3 - F	
Total Kjeldahl Nitrogen	02/18	10:00 AM	45594.3	mg/kg	JDR	101.4	0.37	SM 4500 NORG	
Phosphorus	02/20	11:30 AM	4621.20	mg/kg	KLB	98.8	3.10	SM 4500 P-E	
Nitrate Nitrogen	02/18	9:45 AM	19.87	mg/kg	KLB	108.6	6.04	SM 4500 NO3 - E	
Nitrite Nitrogen	02/18	9:45 AM	< 4.10	mg/kg	KLB	108.6	6.04	SM 4500 NO3 - E	
Arsenic	03/05	12:13 PM	7.20	mg/kg	KLB	98.4	0.12	SM 3120 B	
Cadmium	03/05	12:13 PM	< 0.4	mg/kg	KLB	99.0	2.27	SM 3120 B	
Chromium	03/05	12:13 PM	9.20	mg/kg	KLB	98.5	0.33	SM 3120 B	
Copper	03/05	12:13 PM	361.90	mg/kg	KLB	92.6	0.12	SM 3120 B	1.
Lead	03/05	12:13 PM	44.50	mg/kg	KLB	95.8	0.35	SM 3120 B	
Molybdenum	03/05	12:13 PM	2.70	mg/kg	KLB	98.3	0.05	SM 3120 B	
Nickel	03/05	12:13 PM	16.70	mg/kg	KLB	94.1	1.09	SM 3120 B	
Potassium	03/05	12:13 PM	1746.00	mg/kg	KLB	100.9	1.59	SM 3120 B	
Selenium	03/05	12:13 PM	< 4.0	mg/kg	KLB	98.6	3.87	SM 3120 B	
Zinc	03/05	12:13 PM	1425.00	mg/kg	KLB	102.3	1.36	SM 3120 B	
Mercury	02/18	3:40 PM	0.36	mg/kg	AI311	96.4	0.270	EPA 7471B	
PCB	02/20	2:30 PM	< 0.25	mg/kg	AI306	42.1	6.11	EPA 3550C, 8082A	
(PCBs 1016, 1221, 1242, 124	8, 1254, 1260), 1262, 1268)	-					2	

Quality Assurance: All Parameters include 10% duplication studies by random selection. The following equipment is checked and calibrated daily: pH meter, balance, incubators, water baths, drying oven and sterilizing apparatus. Ammonia Nitrogen and Oil & Grease Analysis include duplication and spike studies at a rate of at least 10%.

Notes: Samples iced at collection. Preserved with H2S04 to pH2: Oil & Grease, Ammonia, COD

Neville Adams, Manager

- 45594.3 - 3647.5 - 41,946.8

Laboratory Calculation Worksheet Melbourne Water and Sewer

Sludge Application Record

Bed# 3\$4

1. Latest Sludge Laboratory Report

	kansas Testing La . O. Box 481, Sea				· 1	
Date of Lab Ro Attach Copy o		wy 14, 2014				
2. Calculating ov	en Dry Tons per C	Cubic Yards Applied				
Percent Solids	From Lab Report	63,89	and a constraint of the second se	Network (1997) and specify the second second	<u>%</u> .	anto or Ausars I h
Cubic Yards of	f Sludge Applied:	14			Cu. Yd.	
CU. Yds. X 0.8	8775* <u>X Percent S</u> 100				Dry Tons	
* (Cu Yds <u>27 (</u> (Cu.	<u>Cu. Ft.</u> <u>65 lbs</u> Ýd. Cu. F			4 4 4		
3. Calculating Pla	nt Available Nitro	ogen (PAN)				
NH3 (Ammoni	a) from lab report	3647,5		m	ng/kg	
NO3 (Nitrate)	from lab report:	19,87	an a		mg/kg	
Organic N from	n report_41,9	46.8 mg/kg X 0	.2=8,389	,36	mg/kg	
PAN equals the	sum above	12,056.73	· · · · · · · · · · · · · · · · · · ·		mg/kg	
4. Calculating Me	tals and PAN app	lied			н. Н	
	Lab Values	Lbs. Per	Dry Tons	Lbs.	Lbs. Per	40
	Mg/kg	Dry Ton	Applied	Applies	Acre 7	10
Copper (CU)	361.90	X 0.002 = .7238	X 14	10,1332	,25333	
Nickel (NI)	16.70	X 0.002 = .0334	X 14	,4676	,01169	
Lead (PB)	44.50	X 0.002 = .089	X 14	1,246	,03115	
Zinc (ZN)	1425.00	X 0.002 = 2.85	X14	39.9	,9975	
Chromium (CR)	9.20	X 0.002 = .0184	X 14	,2576	,00644	
Cadmium (CD)	.4	X 0.002 = ,000 %	X/4		.00028	
PAN		X 0.002 = 24, 11346			8.439711	
Phosphorus	4,621,20	X 0.002 = 9.2424	the second s		3,23484	
Volatile Solid	63.89	X 0.002 = 12778	X 14	1,78892	,044723	1.0
Mercury	.36	X 0.002 = .00072	X 14	,01000	,000252	
Arsenic	7,20	X 0.002 = ,0/44	X 14	,2016	,00504	
Nitrite/Nitrogen	4.10	X 0.002 = ,0082	X 14	,1148	,00287	
PCB's	-25	X 0.002 = ,0005	X / 4	,007	,000175	
Selenium	4.0	X 0.002 = 100%	X 14	,112	,0028	

Date	Time	Hours Mixed	P.H. *	Lime	Field Applied	Name
12-17-14	12:05	2		1	Soda E .	Paul Cooper Dustin
12-17-14	3:00	2	12	1	Soda E B. Cooper B. Cooper	Dustin
12-17-14	6:30	2	12	1	B. Cooper	Dustin
		· · ·				
		ана алана алан 				
	- - -	a prime e	8 - N.	54		
		a an Contra a				
		1				
			е С. к.			
				2 2		
	. Au.					
			· .			je.
				`		
					19 ⁴ 1917 - 1	

*

Date	Time	Hours Mixed	P.H.	Lime	Field Applied	Name
11-1-14	7:00 A.M.	2	. 11	1	Ben Cooper	Dustin Payne
11-1-14	9:35	2	11	1	B. Cooper.	Dustin Payne
11-1-14	12:10	2	11	1	B. Cooper	Sustin Payne
11-1-14	2:30	2	12	1	B. Cooper	Dustin Payne
11-1-14	5:20	2	12	1	B. Cooper	Sustin Payne
11-3-14	8:00 A.M.	2	12	1	B. Cooper	Dustin Payne
11-3-14	10:#5	2	12		B. Cooper	Dusten Payne
12-15-14	8:00 A.M.	2	12		B. Cooper	Dustin Payne
12-15-14	10:45	2	11	1	B, Cooper	Dustin Payne
12-15-14	1:45	2	11	1	B. Cooper	Dustin Payne
12-15-14	4:45	2	12)	B. Cooper	Dustin Payme
12-16-14	7:00 AM	2	12	\mathbf{N}_{1}	Solf TE	Part Gapen
12-16-14	9:30	2	12	· · · · · · · · · · · · · · · · · · ·	Sorti FE	Paul Logy
12-16-14	12:10	2	12	1	Sodi FE	Paulage
1.2-16-14		2	11	1	Soda E	Pallon
12-17-14	7:00AM	2	12	/	Soda E	Parl Logn
12-17-14		2_	12	1	Soda E	Paltip

					15	-00 Set Pier hoad
			Sluda	e Applie	he	Pier hoad
Date	Time	Hours Mixed	P.H.	Lime	Field Applied	Name
7-19-14	8:00	2	12		B. Cooper	Dustin P.
7-19-14	10:40	2	11	1	B. Cooper.	Dustin
7-19-14	1:30	2	13	1	B. Cooper	Dustin 1
7-23-14	7:30	X	12	1	Soda W	Rowl
7-2314	10:10	2	12	1	Broch well	Pant
7-22-14	12:45	2	13	1	Brochwell	Pal.
7-23.14	3:30	2	13	1	RSW	Parl
9-22-14	10:00	2	11	× 1.	B. Cooper	Dutin
9-22-14	12:45	2	12	1	R. Cooper	Dustin
9-22-14	3:30	12	11	1	B. Cooper	Durtin
9-22-14	7:00	2	11		B. Cooper	Dustin
9-23-14	9:00	2	12	1	B. Coopor	Durten
9-23-14	11:45	2	12	1	R. Cooper	Dustin
9-24-14	10:00	2		1	B. Coaser.	Sustan
9-24-14	1:15	2	12	1	B. Corper	Dustin
9-24-14	4:45	2	12	1	B. Cooper	Dustin
10-31-14	4:20	2	12	1	B. Cooper	Dustin
	-1					

Date	Time	Hours Mixed	P.H.	Lime	Field Applied	Name
6-27,14	3:00	2	(3	1	RJW	Paul
7-hig	8:30	2	13	1	Soda II	fail
7-1-14	h.15	2	13	1	RJW	Paul
7-4-14	7:00	2	12	1	B. Cooper	Dustin
7-4-14	9:45	2	12		B. Cooper	Dustin
7-4-14	12:30	え	12	1	B. Cooper	Dustin
7-4-14	3:30	2	12		B. Cooper	Dustin
7-9-14	10:00	2	13	1	B. Cooper	Dustin
7-9-14	12:45	2	13	1	B. Cooper	Dustin
7-12-14	7:00	2	13	1	B. Cooper	Dustin
7-12-14	9:35	2	13	1	B. Cooper	Dustin
7-12-14	12:15	2	13)	B. Cooper	Instin
7-12-14	3:45	2	13		B. Cooper	Dustin
7-14-14	7:30	2	13	1.St	RJW	Parl
7-14-14	10:15	2-	13	6 -	AS W	Parl
7-14-14	1:00	2	13	1	RTW	Part
7-15-14	7:30	2	12	1	Soda N	Paul
7-15-14	10:15	2	13	1	Soda w	Rout
7-15-14	1:05	2	13	1	Brockwell	Yout
7-15-14	3:30	2	13)	Brochund	Parl

1. S. C.

×.

Date	Time	Hours Mixed	P.H.	Lime	Field Applied	Name
5-20-14	8:20	2	13	1	B. Cooper	Dustin
5-28-14	8:30	2	13	1	B. Cooper	Dustin
5-28-14	1:30	4	13	1	B. Cooper	Dustin
6-16-14	12:00	2	13		B. Cooper	Dustin
6-16-14	2:45	2	13	1	B. Cooper	Dustin
6-16-14	3:35	2	13	1	B. Cooper	Dustin
6-17-14	12:00	2	13	1	B. Cooper	Dustin
6-17-14	3:00	2	13	1	B. Cooper	Dustin
6-2414	7:30	2	13	/	RJ West	Parl
6-24=14	10:15	2	12	1	RJ West	fail
6-24 14	12:45	2	13	/	RJ West	Poul
6-24-14	3:30	2	13	1	RJWY	foul
6-25-14	7:30	2	13	1	Soda W	Paul
625-14	10:00	2	13	1	Sola W	Paul
6-27-14	7:30	2	13	1	Soda W	for
6-27-64	10:05	2	12	1	RJW	Rand
6-27-14	12:35	2	13	1	RTW	Paul

Date	Time	Hours Mixed	P.H.	Lime	Field Applied	Name
5-6-14	5:40	2	10	L	Brochwell	Paul
5-7-14	7:30	2	11	1	Soda W	Part
5-7-14	10-10	2	10	1	Brockwell	Paul
5-7-14	12:45	2	11 .	1	Brochmell	faul
5-7-14	3:15	2	12	<u> </u>	Brochmell	fail
5-7-14		2	11	1	Brochwell	Part
5-8-14	7:30	2	12	1	Soda E	Parl
5-8-14	10:02	2	12	(soda E	Paul
5-8-14	12:35	2	12	1	R5 W	Paul
5-8-14	3:05	2	2 ni	1	Soda E	Sal
578-14	5:20	2	11	1	RJW	Pal
5-12-14	7:30	2	12	1	RJ W	Paul
5-19-14	2:00	2	12	1	B. Cooper	Dustin
5-19-14	5:00	2	12	1	B. Cooper	Dustin
5-20-14	12:00	2	12	1	B. Cooper	Dustin France
5-20-14	2:45	ん	12		B. Cooper	Dustin
5-20-14	5:45	え	12	1	B. Cooper	Dustin

	Date	Time	Hours Mixed	P.H.	Lime	Field Applied	Name
	4-24-14	7:30	2	12		Soda E	Paul
	4-24-14	10:10	2	12	1	Soila E	Paul
_	4-2414	12:45	2	12	1	SoluE	Poul
	4-24-14	3:35	2	. 11 .	1	Soda E	Paul
	4-24-14	6:05	2	12	1	Soba E	faul
-	4-25-14	7:30	2	12	1.	Soda E	Yail
	4-25-14	10:05	2	12)	Soda E	Park
	4-25-14	12:30	2	12	1	Socla E	Part
	4.25:14	3:12	2	12	1	SodaE	Part
	4-25-14	4:45	2	12	1	Soda E	Part
	4-2914	7:20	2	1h	1	Brochwell	Paul
	4:2919	10:10	2	12	1	Brochull	Paul
	4-29-14	12:40	2	12	l	RJ West	Parl
	5-6-14	7:30	2	12	/	Brochwell	Paul
	5-6-14	. /	2	12	1	Brochwell	Part
	5-6-14	12:40	2	12	1	Soda W	Paul
	5-6-14	3:10	2	12	(Soda w	Poul

Date	Time	Hours Mixed	-	e Applie	Ed Field Applied	Name
1 10 111		0				
1-18-14	8:00	2	12	I	Ban Cooper	Dustin
1-18-14	10:45	2	13	- 1	B Cooper	Duttin "
1-18-14	1::15	2	12	1.	B. Cooper	Dewitin
1-18-14	3:45	2	12	1	B. Cooper	Dustin
1-18-14	6:15	2	12	1	B. Cooper	Dustin
1-19-14	8:00	2	12	1	B. Cooper:	Dustin
1-19-14	10:45	2	11	1	B. Cooper	Dustin
1-28-14	10:00		12	1	B. Corper	Distin
1-28-14	12:45	-2	12	1	B. Corper	1 Devetin
1-28-14	3:15	2	12	1	* B. 1.00-P22	Drestin
2-1-14	7:30	2		1	B. Cooper	Dustin
2-1-14	10:00	2	11 -	1	B. Cooper	Dustin
2-1-14	12:45	2	17	1	B. Cooper B. Cooper	Dustin
2-1-14	3/30	2	11	1	B. Cooper	Dustin
2-20-14	10:00	2	12	1	B. Cooper	Dustin Payne
3-11-14	10:00	2	12	1	B. Cooper	Dustin
3-11-14	12:45	2	12	1	B. Cooper B. Cooper	Dustin
				1 ²⁶		A

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

-20-14

Date

_____Number of Loads

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721

Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb **Ronnie Treat** Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Cityofmelbourne@centurytel.net

Coy Dale, Water & Sewer Super.

1-14 Date

4_____Number of Loads

÷.,

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

1-28-14

Number of Loads

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 <u>Cityofmelbourne@centurytel.net</u> Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

1-19-14 Date

_____Number of Loads

rnone: (8/0) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

1-18-14 Date

<u>5</u> Number of Loads

Mayor: Shannon Womack

Recorder/Treasurer: Alecia K. Bray

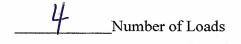
P.O. Box 800 63 Municipal Drive Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 . Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Warren Smith Trey Lamb Ronnie Treat Lee Melton John Allen Engelhardt

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment".

Coy Dale, Water & Sewer Super.

Recorder/Treasurer: Alecia K. Bray



P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

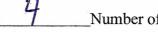
To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

12-16-14

Recorder/Treasurer: Alecia K. Bray



P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net **Council Members:** William Wright Jerry Crosby Paul Womack Trey Lamb **Ronnie Treat** Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

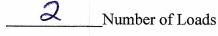
"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

Number of Loads

12-15-14

Recorder/Treasurer: Alecia K. Bray



P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

11-3-14

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale,/Water & Sewer Super.

Number of Loads

11-1-14

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

<u>10-31-14</u> Date

Date

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

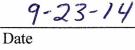
"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

Date

24-14

Recorder/Treasurer: Alecia K. Bray



P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net **Council Members:** William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

2

Recorder/Treasurer: Alecia K. Bray

Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

Number of Loads

-22-14

Date

Mayor: Rhonda Halbrook

Recorder/Treasurer: Alecia K. Bray

Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

7-23-14

Number of Loads

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 <u>Cityofmelbourne@centurytel.net</u> Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Number of Loads

Coy Dale, Water & Sewer Super.

1-19-14 Date

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

Number of Loads

- 15-14

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

-14-14

Date

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

-12-14

Date

4

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

7-14 Date

_____Number of Loads

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Number of Loads

Coy Dale, Water & Sewer Super.

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dalé, Water & Sewer Super.

Number of Loads

7-1-14 Date

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Number of Loads

Coy Dale, Water & Sewer Super.

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

d

Number of Loads

6-25-14

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

Number of Loads

-24-14

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

-17-14 Date

_____Number of Loads

Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

6-16-14 Date

____Number of Loads

Mayor:

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I, am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

Date

-____Number of Loads

Council Members:

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

5-20-14

Number of Loads

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

5-19-14 Date

Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

5-12-14

Date

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

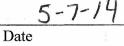
"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements, have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale Water & Sewer Super.

-8-14 Date

_____Number of Loads

Recorder/Treasurer: Alecia K. Bray



P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net **Council Members:** William Wright Jerry Crosby Paul Womack Trey Lamb **Ronnie Treat** Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

Recorder/Treasurer: Alecia K. Bray

Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

5-6-14 Date

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

3 Number of Loads

29-14

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

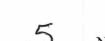
Number of Loads

Coy Dale, Water & Sewer Super.

4-25-14

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith


To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

4-24-14

Date

Coy Dale, Water & Sewer Super.

Recorder/Treasurer: Alecia K. Bray

P.O. Box 800 Melbourne, AR 72556 Phone: (870) 368-4215 Fax: (870) 368-4721 Cityofmelbourne@centurytel.net Council Members: William Wright Jerry Crosby Paul Womack Trey Lamb Ronnie Treat Laura Sipe Sonia Blankenship Warren Smith

To Whom It May Concern:

"I certify, under penalty of law, that the pathogen requirements in, 503.12 (b), (4), and the vector attraction reduction requirements are met in 503.33 (b), along with the pollutant concentration limits. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gathered and evaluated the information used to determine the pathogen requirements and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Coy Dale, Water & Sewer Super.

-11-14 Date

A _____Number of Loads